Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Viruses ; 15(5)2023 05 18.
Artículo en Inglés | MEDLINE | ID: covidwho-20242415

RESUMEN

SARS-CoV-2 and its many variants have caused a worldwide emergency. Host cells colonised by SARS-CoV-2 present a significantly different gene expression landscape. As expected, this is particularly true for genes that directly interact with virus proteins. Thus, understanding the role that transcription factors can play in driving differential regulation in patients affected by COVID-19 is a focal point to unveil virus infection. In this regard, we have identified 19 transcription factors which are predicted to target human proteins interacting with Spike glycoprotein of SARS-CoV-2. Transcriptomics RNA-Seq data derived from 13 human organs are used to analyse expression correlation between identified transcription factors and related target genes in both COVID-19 patients and healthy individuals. This resulted in the identification of transcription factors showing the most relevant impact in terms of most evident differential correlation between COVID-19 patients and healthy individuals. This analysis has also identified five organs such as the blood, heart, lung, nasopharynx and respiratory tract in which a major effect of differential regulation mediated by transcription factors is observed. These organs are also known to be affected by COVID-19, thereby providing consistency to our analysis. Furthermore, 31 key human genes differentially regulated by the transcription factors in the five organs are identified and the corresponding KEGG pathways and GO enrichment are also reported. Finally, the drugs targeting those 31 genes are also put forth. This in silico study explores the effects of transcription factors on human genes interacting with Spike glycoprotein of SARS-CoV-2 and intends to provide new insights to inhibit the virus infection.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Glicoproteínas/genética
2.
ACS Omega ; 8(15): 13840-13854, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2295518

RESUMEN

COVID-19, the disease caused by SARS-CoV-2, has been disrupting our lives for more than two years now. SARS-CoV-2 interacts with human proteins to pave its way into the human body, thereby wreaking havoc. Moreover, the mutating variants of the virus that take place in the SARS-CoV-2 genome are also a cause of concern among the masses. Thus, it is very important to understand human-spike protein-protein interactions (PPIs) in order to predict new PPIs and consequently propose drugs for the human proteins in order to fight the virus and its different mutated variants, with the mutations occurring in the spike protein. This fact motivated us to develop a complete pipeline where PPIs and drug-protein interactions can be predicted for human-SARS-CoV-2 interactions. In this regard, initially interacting data sets are collected from the literature, and noninteracting data sets are subsequently created for human-SARS-CoV-2 by considering only spike glycoprotein. On the other hand, for drug-protein interactions both interacting and noninteracting data sets are considered from DrugBank and ChEMBL databases. Thereafter, a model based on a sequence-based feature is used to code the protein sequences of human and spike proteins using the well-known Moran autocorrelation technique, while the drugs are coded using another well-known technique, viz., PaDEL descriptors, to predict new human-spike PPIs and eventually new drug-protein interactions for the top 20 predicted human proteins interacting with the original spike protein and its different mutated variants like Alpha, Beta, Delta, Gamma, and Omicron. Such predictions are carried out by random forest as it is found to perform better than other predictors, providing an accuracy of 90.53% for human-spike PPI and 96.15% for drug-protein interactions. Finally, 40 unique drugs like eicosapentaenoic acid, doxercalciferol, ciclesonide, dexamethasone, methylprednisolone, etc. are identified that target 32 human proteins like ACACA, DST, DYNC1H1, etc.

3.
ACS Omega ; 7(50): 46411-46420, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2160146

RESUMEN

SARS-CoV-2 poses a great challenge toward mankind, majorly due to its evolution and frequently occurring variants. On the other hand, in human hosts, microRNA (miRNA) plays a vital role in replication and propagation during a viral infection and can control the biological processes. This may be essential for the progression of viral infection. Moreover, human miRNAs can play a therapeutic role in treatment of different viral diseases by binding to the target sites of the virus genome, thereby hindering the essential functioning of the virus. Motivated by this fact, we have hypothesized a new approach in order to identify human miRNAs that can target the mRNA (genome) of SARS-CoV-2 to degrade their protein synthesis. In this regard, the multiple sequence alignment technique Clustal Omega is used to align a complement of 2656 human miRNAs with the SARS-CoV-2 reference genome (mRNA). Thereafter, ranking of these aligned human miRNAs is performed with the help of a new scoring function that takes into account the (a) total number of nucleotide matches between the human miRNA and the SARS-CoV-2 genome, (b) number of consecutive nucleotide matches between the human miRNA and the SARS-CoV-2 genome, (c) number of nucleotide mismatches between the human miRNA and the SARS-CoV-2 genome, and (d) the difference in length before and after alignment of the human miRNA. As a result, from the 2656 ranked miRNAs, the top 20 human miRNAs are reported, which are targeting different coding and non-coding regions of the SARS-CoV-2 genome. Moreover, molecular docking of such human miRNAs with virus mRNA is performed to verify the efficacy of the interactions. Furthermore, 4 miRNAs out of the top 20 miRNAs are identified to have the seed region. In order to inhibit the virus, the key human targets of the seed regions may be targeted. Repurposable drugs like carfilzomib, bortezomib, hydralazine, and paclitaxel are identified for such purpose.

4.
ACS Omega ; 7(48): 43589-43602, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2150985

RESUMEN

Cancer and COVID-19 have killed millions of people worldwide. COVID-19 is even more dangerous to people with comorbidities such as cancer. Thus, it is imperative to identify the key human genes or biomarkers that can be targeted to develop novel prognosis and therapeutic strategies. The transcriptomic data provided by the next-generation sequencing technique makes this identification very convenient. Hence, mRNA (messenger ribonucleic acid) expression data of 2265 cancer and 282 normal patients were considered, while for COVID-19 assessment, 784 and 425 COVID-19 and normal patients were taken, respectively. Initially, volcano plots were used to identify the up- and down-regulated genes for both cancer and COVID-19. Thereafter, protein-protein interaction (PPI) networks were prepared by combining all the up- and down-regulated genes for each of cancer and COVID-19. Subsequently, such networks were analyzed to identify the top 10 genes with the highest degree of connection to provide the biomarkers. Interestingly, these genes were all up-regulated for cancer, while they were down-regulated for COVID-19. This study had also identified common genes between cancer and COVID-19, all of which were up-regulated in both the diseases. This analysis revealed that FN1 was highly up-regulated in different organs for cancer, while EEF2 was dysregulated in most organs affected by COVID-19. Then, functional enrichment analysis was performed to identify significant biological processes. Finally, the drugs for cancer and COVID-19 biomarkers and the common genes between them were identified using the Enrichr online web tool. These drugs include lucanthone, etoposide, and methotrexate, targeting the biomarkers for cancer, while paclitaxel is an important drug for COVID-19.

5.
Int Immunopharmacol ; 112: 109224, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2076214

RESUMEN

In the worrisome scenarios of various waves of SARS-CoV-2 pandemic, a comprehensive bioinformatics pipeline is essential to analyse the virus genomes in order to understand its evolution, thereby identifying mutations as signature SNPs, conserved regions and subsequently to design epitope based synthetic vaccine. We have thus performed multiple sequence alignment of 4996 Indian SARS-CoV-2 genomes as a case study using MAFFT followed by phylogenetic analysis using Nextstrain to identify virus clades. Furthermore, based on the entropy of each genomic coordinate of the aligned sequences, conserved regions are identified. After refinement of the conserved regions, based on its length, one conserved region is identified for which the primers and probes are reported for virus detection. The refined conserved regions are also used to identify T-cell and B-cell epitopes along with their immunogenic and antigenic scores. Such scores are used for selecting the most immunogenic and antigenic epitopes. By executing this pipeline, 40 unique signature SNPs are identified resulting in 23 non-synonymous signature SNPs which provide 28 amino acid changes in protein. On the other hand, 12 conserved regions are selected based on refinement criteria out of which one is selected as the potential target for virus detection. Additionally, 22 MHC-I and 21 MHC-II restricted T-cell epitopes with 10 unique HLA alleles each and 17 B-cell epitopes are obtained for 12 conserved regions. All the results are validated both quantitatively and qualitatively which show that from genetic variability to synthetic vaccine design, the proposed pipeline can be used effectively to combat SARS-CoV-2.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/genética , Epítopos de Linfocito B , Epítopos de Linfocito T , Vacunas contra la COVID-19/genética , Biología Computacional , Filogenia , COVID-19/prevención & control , Inmunogenicidad Vacunal , Vacunas Sintéticas/genética , Aminoácidos
6.
Front Genet ; 13: 960107, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2022696
7.
ACS omega ; 7(27):23069-23074, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1940238

RESUMEN

The problem of virus classification is always a subject of concern for virology or epidemiology over the decades. In this regard, a machine learning technique can be used to predict the novel coronavirus by considering its sequence. Thus, we are proposing a machine learning-based novel coronavirus prediction technique, called COVID-Predictor, where 1000 sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other viruses are used to train a Naive Bayes classifier so that it can predict any unknown sequences of these viruses. The model has been validated using 10-fold cross-validation in comparison with other machine learning techniques. The results show the superiority of our predictor by achieving an average 99.7% accuracy on an unseen validation set of viruses. The same pre-trained model has been used to design a web-based application where sequences of unknown viruses can be uploaded to predict the novel coronavirus.

8.
ACS omega ; 7(24):21086-21101, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1904721

RESUMEN

It is two years now but the world is still struggling against COVID-19 due to the havoc created by the SARS-CoV-2 virus and its multiple variants. Considering this perspective, in this work, we have hypothesized a new approach in order to identify potential regions in SARS-CoV-2 similar to the human miRNAs. Thus, they may have similar consequences as caused by the human miRNAs in human body. Therefore, the same way by which human miRNAs are inhibited can be applied for such potential regions of virus as well by administering drugs to the interacting human proteins. In this regard, the multiple sequence alignment technique Clustal Omega is used to align 2656 human miRNAs with the SARS-CoV-2 reference genome to identify the potential regions within the virus reference genome which have high similarities with the human miRNAs. The potential regions in virus genome are identified based on the highest number of nucleotide match, greater than or equal to 5 at a genomic position, for the aligned miRNAs. As a result, 38 potential SARS-CoV-2 regions are identified consisting of 249 human miRNAs. Among these 38 potential regions, some top regions belong to nucleocapsid, RdRp, helicase, and ORF8. To understand the biological significance of these potential regions, the targets of the human miRNAs are considered for KEGG pathways and protein–protein and drug–protein interaction analysis as the human miRNAs are similar to the potential regions of SARS-CoV-2. Significant pathways are found which lead to comorbidities. Subsequently, drugs like emodin, bicalutamide, vorinostat, etc. are identified that may be used for clinical trials.

9.
PLoS One ; 17(3): e0265579, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1765536

RESUMEN

The second wave of SARS-CoV-2 has hit India hard and though the vaccination drive has started, moderate number of COVID affected patients is still present in the country, thereby leading to the analysis of the evolving virus strains. In this regard, multiple sequence alignment of 17271 Indian SARS-CoV-2 sequences is performed using MAFFT followed by their phylogenetic analysis using Nextstrain. Subsequently, mutation points as SNPs are identified by Nextstrain. Thereafter, from the aligned sequences temporal and spatial analysis are carried out to identify top 10 hotspot mutations in the coding regions based on entropy. Finally, to judge the functional characteristics of all the non-synonymous hotspot mutations, their changes in proteins are evaluated as biological functions considering the sequences by using PolyPhen-2 while I-Mutant 2.0 evaluates their structural stability. For both temporal and spatial analysis, there are 21 non-synonymous hotspot mutations which are unstable and damaging.


Asunto(s)
COVID-19/epidemiología , Punto Alto de Contagio de Enfermedades , Genoma Viral/genética , Mutación/genética , SARS-CoV-2/genética , COVID-19/virología , Humanos , India/epidemiología , Filogenia , Análisis Espacio-Temporal
10.
Int Immunopharmacol ; 105: 108565, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1654618

RESUMEN

Since the inception of SARS-CoV-2 in December 2019, many variants have emerged over time. Some of these variants have resulted in transmissibility changes of the virus and may also have impact on diagnosis, therapeutics and even vaccines, thereby raising particular concerns in the scientific community. The variants which have mutations in Spike glycoprotein are the primary focus as it is the main target for neutralising antibodies. SARS-CoV-2 is known to infect human through Spike glycoprotein and uses receptor-binding domain (RBD) to bind to the ACE2 receptor in human. Thus, it is of utmost importance to study these variants and their corresponding mutations. Such 12 different important variants identified so far are B.1.1.7 (Alpha), B.1.351 (Beta), B.1.525 (Eta), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota), B.1.617.1 (Kappa), B.1.617.2 (Delta), C.37 (Lambda), P.1 (Gamma), P.2 (Zeta), P.3 (Theta) and the recently discovered B.1.1.529 (Omicron). These variants have 84 unique mutations in Spike glycoprotein. To analyse such mutations, multiple sequence alignment of 77681 SARS-CoV-2 genomes of 98 countries over the period from January 2020 to July 2021 is performed followed by phylogenetic analysis. Also, characteristics of new emerging variants are elaborately discussed. The individual evolution of these mutation points and the respective variants are visualised and their characteristics are also reported. Moreover, to judge the characteristics of the non-synonymous mutation points (substitutions), their biological functions are evaluated by PolyPhen-2 while protein structural stability is evaluated using I-Mutant 2.0.


Asunto(s)
SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Evolución Molecular , Genoma Viral , Humanos , Mutación
11.
Gene ; 818: 146136, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1611737

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated Cas protein (CRISPR-Cas) has turned out to be a very important tool for the rapid detection of viruses. This can be used for the identification of the target site in a virus by identifying a 3-6 nt length Protospacer Adjacent Motif (PAM) adjacent to the potential target site, thus motivating us to adopt CRISPR-Cas technique to identify SARS-CoV-2 as well as other members of Coronaviridae family. In this regard, we have developed a fast and effective method using k-mer technique in order to identify the PAM by scanning the whole genome of the respective virus. Subsequently, palindromic sequences adjacent to the PAM locations are identified as the potential target sites. Palindromes are considered in this work as they are known to identify viruses. Once all the palindrome-PAM combinations are identified, PAMs specific for the RNA-guided DNA Cas9/Cas12 endonuclease are identified to bind and cut the target sites. In this regard, PAMs such as 5'-TGG-3' and 5'-TTTA-3' in NSP3 and Exon for SARS-CoV-2, 5'-GGG-3' and 5'-TGG-3' in Exon and NSP2 for MERS-CoV and 5'-AGG-3' and 5'-TTTG-3' in Helicase and NSP3 respectively for SARS-CoV-1 are identified corresponding to SpCas9 and FnCas12a endonucleases. Finally, to recognise the target sites of Coronaviridae family as cleaved by SpCas9 and FnCas12a, complements of the palindromic target regions are designed as primers or guide RNA (gRNA). Therefore, such complementary gRNAs along with respective Cas proteins can be considered in assays for the identification of SARS-CoV-2, MERS-CoV and SARS-CoV-1.


Asunto(s)
Sistemas CRISPR-Cas/genética , Secuencias Invertidas Repetidas/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica , Humanos
12.
Front Genet ; 12: 753440, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1575471

RESUMEN

Since its emergence in Wuhan, China, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread very rapidly around the world, resulting in a global pandemic. Though the vaccination process has started, the number of COVID-affected patients is still quite large. Hence, an analysis of hotspot mutations of the different evolving virus strains needs to be carried out. In this regard, multiple sequence alignment of 71,038 SARS-CoV-2 genomes of 98 countries over the period from January 2020 to June 2021 is performed using MAFFT followed by phylogenetic analysis in order to visualize the virus evolution. These steps resulted in the identification of hotspot mutations as deletions and substitutions in the coding regions based on entropy greater than or equal to 0.3, leading to a total of 45 unique hotspot mutations. Moreover, 10,286 Indian sequences are considered from 71,038 global SARS-CoV-2 sequences as a demonstrative example that gives 52 unique hotspot mutations. Furthermore, the evolution of the hotspot mutations along with the mutations in variants of concern is visualized, and their characteristics are discussed as well. Also, for all the non-synonymous substitutions (missense mutations), the functional consequences of amino acid changes in the respective protein structures are calculated using PolyPhen-2 and I-Mutant 2.0. In addition to this, SSIPe is used to report the binding affinity between the receptor-binding domain of Spike protein and human ACE2 protein by considering L452R, T478K, E484Q, and N501Y hotspot mutations in that region.

13.
Infect Genet Evol ; 97: 105154, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1521408

RESUMEN

The pandemic of COVID-19 has been haunting us for almost the past two years. Although, the vaccination drive is in full swing throughout the world, different mutations of the SARS-CoV-2 virus are making it very difficult to put an end to the pandemic. The second wave in India, one of the worst sufferers of this pandemic, can be mainly attributed to the Delta variant i.e. B.1.617.2. Thus, it is very important to analyse and understand the mutational trajectory of SARS-CoV-2 through the study of the 26 virus proteins. In this regard, more than 17,000 protein sequences of Indian SARS-CoV-2 genomes are analysed using entropy-based approach in order to find the monthly mutational trajectory. Furthermore, Hellinger distance is also used to show the difference of the mutation events between the consecutive months for each of the 26 SARS-CoV-2 protein. The results show that the mutation rates and the mutation events of the viral proteins though changing in the initial months, start stabilizing later on for mainly the four structural proteins while the non-structural proteins mostly exhibit a more constant trend. As a consequence, it can be inferred that the evolution of the new mutative configurations will eventually reduce.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , Tasa de Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas no Estructurales Virales/genética , Proteínas Estructurales Virales/genética , COVID-19/virología , Entropía , Monitoreo Epidemiológico , Evolución Molecular , Expresión Génica , Humanos , India/epidemiología , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/metabolismo , Proteínas Estructurales Virales/clasificación , Proteínas Estructurales Virales/metabolismo
14.
Computers in biology and medicine ; 2021.
Artículo en Inglés | EuropePMC | ID: covidwho-1451564

RESUMEN

SARS-CoV-2 has a higher chance of progression in adults of any age with certain underlying health conditions or comorbidities like cancer, neurological diseases and in certain cases may even lead to death. Like other viruses, SARS-CoV-2 also interacts with host proteins to pave its entry into host cells. Therefore, to understand the behaviour of SARS-CoV-2 and design of effective antiviral drugs, host-virus protein-protein interactions (PPIs) can be very useful. In this regard, we have initially created a human-SARS-CoV-2 PPI database from existing works in the literature which has resulted in 7085 unique PPIs. Subsequently, we have identified at most 10 proteins with highest degrees viz. hub proteins from interacting human proteins for individual virus protein. The identification of these hub proteins is important as they are connected to most of the other human proteins. Consequently, when they get affected, the potential diseases are triggered in the corresponding pathways, thereby leading to comorbidities. Furthermore, the biological significance of the identified hub proteins is shown using KEGG pathway and GO enrichment analysis. KEGG pathway analysis is also essential for identifying the pathways leading to comorbidities. Among others, SARS-CoV-2 proteins viz. NSP2, NSP5, Envelope and ORF10 interacting with human hub proteins like COX4I1, COX5A, COX5B, NDUFS1, CANX, HSP90AA1 and TP53 lead to comorbidities. Such comorbidities are Alzheimer, Parkinson, Huntington, HTLV-1 infection, prostate cancer and viral carcinogenesis. Subsequently, using Enrichr tool possible repurposable drugs which target the human hub proteins are reported in this paper as well. Therefore, this work provides a consolidated study for human-SARS-CoV-2 protein interactions to understand the relationship between comorbidity and hub proteins so that it may pave the way for the development of anti-viral drugs.

15.
Methods ; 203: 282-296, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1415845

RESUMEN

Since the emergence of SARS-CoV-2 in Wuhan, China more than a year ago, it has spread across the world in a very short span of time. Although, different forms of vaccines are being rolled out for vaccination programs around the globe, the mutation of the virus is still a cause of concern among the research communities. Hence, it is important to study the constantly evolving virus and its strains in order to provide a much more stable form of cure. This fact motivated us to conduct this research where we have initially carried out multiple sequence alignment of 15359 and 3033 global dataset without Indian and the dataset of exclusive Indian SARS-CoV-2 genomes respectively, using MAFFT. Subsequently, phylogenetic analyses are performed using Nextstrain to identify virus clades. Consequently, the virus strains are found to be distributed among 5 major clades or clusters viz. 19A, 19B, 20A, 20B and 20C. Thereafter, mutation points as SNPs are identified in each clade. Henceforth, from each clade top 10 signature SNPs are identified based on their frequency i.e. number of occurrences in the virus genome. As a result, 50 such signature SNPs are individually identified for global dataset without Indian and dataset of exclusive Indian SARS-CoV-2 genomes respectively. Out of each 50 signature SNPs, 39 and 41 unique SNPs are identified among which 25 non-synonymous signature SNPs (out of 39) resulted in 30 amino acid changes in protein while 27 changes in amino acid are identified from 22 non-synonymous signature SNPs (out of 41). These 30 and 27 amino acid changes for the non-synonymous signature SNPs are visualised in their respective protein structure as well. Finally, in order to judge the characteristics of the identified clades, the non-synonymous signature SNPs are considered to evaluate the changes in proteins as biological functions with the sequences using PROVEAN and PolyPhen-2 while I-Mutant 2.0 is used to evaluate their structural stability. As a consequence, for global dataset without Indian sequences, G251V in ORF3a in clade 19A, F308Y and G196V in NSP4 and ORF3a in 19B are the unique amino acid changes which are responsible for defining each clade as they are all deleterious and unstable. Such changes which are common for both global dataset without Indian and dataset of exclusive Indian sequences are R203M in Nucleocapsid for 20B, T85I and Q57H in NSP2 and ORF3a respectively for 20C while for exclusive Indian sequences such unique changes are A97V in RdRp, G339S and G339C in NSP2 in 19A and Q57H in ORF3a in 20A.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aminoácidos , COVID-19/epidemiología , COVID-19/genética , Genoma Viral , Humanos , Mutación , Filogenia , Polimorfismo de Nucleótido Simple , SARS-CoV-2/genética
16.
Front Public Health ; 9: 708224, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1348576

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has gripped the entire world, almost paralysing the human race in its entirety. The virus rapidly transmits via human-to-human medium resulting in a massive increase of patients with COVID-19. In order to curb the spread of the disease, an immediate action of complete lockdown was implemented across the globe. India with a population of over 1.3 billion was not an exception and took the challenge to execute phase-wise lockdown, unlock and partial lockdown activities. In this study, we intend to summarise these different phases that the Government of India (GoI) imposed to fight against SARS-CoV-2 so that it can act as a reference guideline to help controlling future waves of COVID-19 and similar pandemic situations in India.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Humanos , Pandemias , Políticas , SARS-CoV-2
17.
Brief Bioinform ; 22(2): 1106-1121, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1343664

RESUMEN

Whole genome analysis of SARS-CoV-2 is important to identify its genetic diversity. Moreover, accurate detection of SARS-CoV-2 is required for its correct diagnosis. To address these, first we have analysed publicly available 10 664 complete or near-complete SARS-CoV-2 genomes of 73 countries globally to find mutation points in the coding regions as substitution, deletion, insertion and single nucleotide polymorphism (SNP) globally and country wise. In this regard, multiple sequence alignment is performed in the presence of reference sequence from NCBI. Once the alignment is done, a consensus sequence is build to analyse each genomic sequence to identify the unique mutation points as substitutions, deletions, insertions and SNPs globally, thereby resulting in 7209, 11700, 119 and 53 such mutation points respectively. Second, in such categories, unique mutations for individual countries are determined with respect to other 72 countries. In case of India, unique 385, 867, 1 and 11 substitutions, deletions, insertions and SNPs are present in 566 SARS-CoV-2 genomes while 458, 1343, 8 and 52 mutation points in such categories are common with other countries. In majority (above 10%) of virus population, the most frequent and common mutation points between global excluding India and India are L37F, P323L, F506L, S507G, D614G and Q57H in NSP6, RdRp, Exon, Spike and ORF3a respectively. While for India, the other most frequent mutation points are T1198K, A97V, T315N and P13L in NSP3, RdRp, Spike and ORF8 respectively. These mutations are further visualised in protein structures and phylogenetic analysis has been done to show the diversity in virus genomes. Third, a web application is provided for searching mutation points globally and country wise. Finally, we have identified the potential conserved region as target that belongs to the coding region of ORF1ab, specifically to the NSP6 gene. Subsequently, we have provided the primers and probes using that conserved region so that it can be used for detecting SARS-CoV-2. Contact:indrajit@nitttrkol.ac.inSupplementary information: Supplementary data are available at http://www.nitttrkol.ac.in/indrajit/projects/COVID-Mutation-10K.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/metabolismo , Genoma Viral , SARS-CoV-2/genética , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , India , Mutación , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Secuenciación Completa del Genoma
18.
Infect Genet Evol ; 92: 104823, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1164208

RESUMEN

The surge of SARS-CoV-2 has created a wave of pandemic around the globe due to its high transmission rate. To contain this virus, researchers are working around the clock for a solution in the form of vaccine. Due to the impact of this pandemic, the economy and healthcare have immensely suffered around the globe. Thus, an efficient vaccine design is the need of the hour. Moreover, to have a generalised vaccine for heterogeneous human population, the virus genomes from different countries should be considered. Thus, in this work, we have performed genome-wide analysis of 10,664 SARS-CoV-2 genomes of 73 countries around the globe in order to identify the potential conserved regions for the development of peptide based synthetic vaccine viz. epitopes with high immunogenic and antigenic scores. In this regard, multiple sequence alignment technique viz. Clustal Omega is used to align the 10,664 SARS-CoV-2 virus genomes. Thereafter, entropy is computed for each genomic coordinate of the aligned genomes. The entropy values are then used to find the conserved regions. These conserved regions are refined based on the criteria that their lengths should be greater than or equal to 60 nt and their corresponding protein sequences are without any stop codons. Furthermore, Nucleotide BLAST is used to verify the specificity of the conserved regions. As a result, we have obtained 17 conserved regions that belong to NSP3, NSP4, NSP6, NSP8, RdRp, Helicase, endoRNAse, 2'-O-RMT, Spike glycoprotein, ORF3a protein, Membrane glycoprotein and Nucleocapsid protein. Finally, these conserved regions are used to identify the T-cell and B-cell epitopes with their corresponding immunogenic and antigenic scores. Based on these scores, the most immunogenic and antigenic epitopes are then selected for each of these 17 conserved regions. Hence, we have obtained 30 MHC-I and 24 MHC-II restricted T-cell epitopes with 14 and 13 unique HLA alleles and 21 B-cell epitopes for the 17 conserved regions. Moreover, for validating the relevance of these epitopes, the binding conformation of the MHC-I and MHC-II restricted T-cell epitopes are shown with respect to HLA alleles. Also, the physico-chemical properties of the epitopes are reported along with Ramchandran plots and Z-Scores and the population coverage is shown as well. Overall, the analysis shows that the identified epitopes can be considered as potential candidates for vaccine design.


Asunto(s)
Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , SARS-CoV-2/genética , Secuencia de Aminoácidos , Antígenos Virales/inmunología , Secuencia de Bases , Secuencia Conservada , Genoma Viral , Estudio de Asociación del Genoma Completo , Humanos , Modelos Moleculares , Conformación Proteica
19.
Virus Res ; 298: 198401, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1157779

RESUMEN

Since the onslaught of SARS-CoV-2, the research community has been searching for a vaccine to fight against this virus. However, during this period, the virus has mutated to adapt to the different environmental conditions in the world and made the task of vaccine design more challenging. In this situation, the identification of virus strains is very much timely and important task. We have performed genome-wide analysis of 10664 SARS-CoV-2 genomes of 73 countries to identify and prepare a Single Nucleotide Polymorphism (SNP) dataset of SARS-CoV-2. Thereafter, with the use of this SNP data, the advantage of hierarchical clustering is taken care of in such a way so that Average Linkage and Complete Linkage with Jaccard and Hamming distance functions are applied separately in order to identify the virus strains as clusters present in the SNP data. In this regard, the consensus of both the clustering results are also considered while Silhouette index is used as a cluster validity index to measure the goodness of the clusters as well to determine the number of clusters or virus strains. As a result, we have identified five major clusters or virus strains present worldwide. Apart from quantitative measures, these clusters are also visualized using Visual Assessment of Tendency (VAT) plot. The evolution of these clusters are also shown. Furthermore, top 10 signature SNPs are identified in each cluster and the non-synonymous signature SNPs are visualised in the respective protein structures. Also, the sequence and structural homology-based prediction along with the protein structural stability of these non-synonymous signature SNPs are reported in order to judge the characteristics of the identified clusters. As a consequence, T85I, Q57H and R203M in NSP2, ORF3a and Nucleocapsid respectively are found to be responsible for Cluster 1 as they are damaging and unstable non-synonymous signature SNPs. Similarly, F506L and S507C in Exon are responsible for both Clusters 3 and 4 while Clusters 2 and 5 do not exhibit such behaviour due to the absence of any non-synonymous signature SNPs. In addition to all these, the code, SNP dataset, 10664 labelled SARS-CoV-2 strains and additional results as supplementary are provided through our website for further use.


Asunto(s)
COVID-19/virología , Genoma Viral , Polimorfismo de Nucleótido Simple , SARS-CoV-2/clasificación , SARS-CoV-2/genética , COVID-19/epidemiología , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Humanos , Mutación , Pandemias , Alineación de Secuencia
20.
Front Genet ; 12: 569120, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1110294

RESUMEN

The COVID-19 disease for Novel coronavirus (SARS-CoV-2) has turned out to be a global pandemic. The high transmission rate of this pathogenic virus demands an early prediction and proper identification for the subsequent treatment. However, polymorphic nature of this virus allows it to adapt and sustain in different kinds of environment which makes it difficult to predict. On the other hand, there are other pathogens like SARS-CoV-1, MERS-CoV, Ebola, Dengue, and Influenza as well, so that a predictor is highly required to distinguish them with the use of their genomic information. To mitigate this problem, in this work COVID-DeepPredictor is proposed on the framework of deep learning to identify an unknown sequence of these pathogens. COVID-DeepPredictor uses Long Short Term Memory as Recurrent Neural Network for the underlying prediction with an alignment-free technique. In this regard, k-mer technique is applied to create Bag-of-Descriptors (BoDs) in order to generate Bag-of-Unique-Descriptors (BoUDs) as vocabulary and subsequently embedded representation is prepared for the given virus sequences. This predictor is not only validated for the dataset using K -fold cross-validation but also for unseen test datasets of SARS-CoV-2 sequences and sequences from other viruses as well. To verify the efficacy of COVID-DeepPredictor, it has been compared with other state-of-the-art prediction techniques based on Linear Discriminant Analysis, Random Forests, and Gradient Boosting Method. COVID-DeepPredictor achieves 100% prediction accuracy on validation dataset while on test datasets, the accuracy ranges from 99.51 to 99.94%. It shows superior results over other prediction techniques as well. In addition to this, accuracy and runtime of COVID-DeepPredictor are considered simultaneously to determine the value of k in k-mer, a comparative study among k values in k-mer, Bag-of-Descriptors (BoDs), and Bag-of-Unique-Descriptors (BoUDs) and a comparison between COVID-DeepPredictor and Nucleotide BLAST have also been performed. The code, training, and test datasets used for COVID-DeepPredictor are available at http://www.nitttrkol.ac.in/indrajit/projects/COVID-DeepPredictor/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA